Search results

Search for "apex structure" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • perturb the controller for a period of time, during which the tip apex structure could be damaged further due to additional tip–sample impacts. However, if a noncontact oscillatory current measurement mode is used, where the control variable is not the instantaneous value of the current, these unexpected
PDF
Album
Full Research Paper
Published 13 Mar 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • Ti2O3 rows, with either the left side or the right side in a higher position, are shown in the NC-AFM image and height profile in Figure 5, indicating that the asymmetric image is not caused by an asymmetric tip apex structure. The other possibility to be considered is interactions between the tip and
PDF
Album
Full Research Paper
Published 10 Mar 2020

Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

  • Sumit Tewari,
  • Koen M. Bastiaans,
  • Milan P. Allan and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2017, 8, 2389–2395, doi:10.3762/bjnano.8.238

Graphical Abstract
  • normalized to the maximum current level which for the above figures are 38 and 24 nA, respectively Ratio of major to minor axis of the elliptical fit showing the convergence of the tip apex structure to a circularly symmetric shape. Three independent runs are shown by blue, green and red symbols. The two
PDF
Album
Full Research Paper
Published 13 Nov 2017

Structural development and energy dissipation in simulated silicon apices

  • Samuel Paul Jarvis,
  • Lev Kantorovich and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2013, 4, 941–948, doi:10.3762/bjnano.4.106

Graphical Abstract
  • rotational degree of freedom can have as measurable an impact on the tip–surface interaction as a completely different tip structure. Keywords: apex structure; atomic force microscopy; DFT; dissipation; hysteresis; NC-AFM; silicon; spectroscopy; tip structure; Introduction The theoretical treatment of
  • ]. Moreover, atomistic simulations remain essential to many current studies in covalent [17][18][19] and ionic [20][21] systems because of the inherent difficulties in determining the tip apex structure from purely experimental evidence. In contrast, on metal surfaces the requirement to use atomistic
PDF
Album
Full Research Paper
Published 20 Dec 2013

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • quantitatively and qualitatively, including: thermal and electronic drift during the measurement, nonlinearities and creep associated with piezoelectric scan elements used in the microscope, variability of tip-apex structure and chemistry between different experiments, and elastic deformations of the tip under
  • features observed in images, to actual sites on the sample surface. Finally, we need to consider that unavoidable variations in the tip-apex structure for independent measurements result in further irreproducibility. The first part of this section covers an in-depth analysis of the related issues, while
  • piezo material is deformed. Tip-apex structure and chemical identity Numerous theoretical and experimental studies have shown that the atomic-scale contrast in NC-AFM measurements is heavily dependent on the local structure of tip apices employed in the experiments, as well as on the chemical identity
PDF
Album
Full Research Paper
Published 11 Sep 2012

Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe

  • Adam Sweetman,
  • Sam Jarvis,
  • Rosanna Danza and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2012, 3, 25–32, doi:10.3762/bjnano.3.3

Graphical Abstract
  • ; noncontact AFM; qPlus; Si(001); Si(100); tip (apex) structure; Introduction It is now generally accepted that atomic resolution in NC-AFM imaging on semiconducting surfaces is due to the chemical force between the atoms of the surface and the last few atoms of the tip apex [1][2][3][4]. Even with well
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2012
Other Beilstein-Institut Open Science Activities